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Abstract 
A classification scheme for twinning in crystals is pro- 
posed. It is based on a tensor distinction of properties 
across the twin interface. The classification employs 
concepts from the theory of transformation twinning. 
The adequacy of such a scheme for other main types of 
twins, namely growth twins and nonferroelastic mechan- 
ical twins, is examined, and found to be satisfactory. All 
twins can be divided into four fundamentally distinct cat- 
egories: ferroelastic or S-twins, nonferroelastic-ferroic 
or N-twins, Bollmann or B-twins and translation or 
T-twins. A comparison is made of the attributes of 
these four types of twins. A compact and informative 
twin symbol is introduced, which carries information 
about the tensor properties in which the twins dif- 
fer. Information about any underlying total or partial 
coincidence sublattice is incorporated by attaching a 
subscript t or p to the main twin symbol. Several 
examples are discussed. This paper also introduces a 
rigorous definition of prototype symmetry in terms of 
the 'nondisruption condition'. 

1. Introduction 
In terms of the origin of twinning, twinned crystals can 
be of three main types: transformation twins, mechanical 
twins and growth twins. The two principal schemes for 
classification of twinning are those due to Friedel (1926) 
and Donnay & Donnay (1974). 

In Friedel's classification (see Cahn, 1954), one first 
looks for a sublattice (if any) that is common to the two 
crystals comprising the twin. Such a lattice is called the 
coincidence lattice. The inverse of the fraction of lattice 
sites common to the two components is called the twin 
index, ~.  There are two primary categories of twins in 
this scheme: Those with S' -- 1 and those with ~' > 1. 
Each of these categories is further divided in terms of 
twin obliquity w, which is a measure of disorientation of 
one component with respect to the other; either w = 0 or 
w # 0. Thus, the four types of twinning in this scheme 
are: twinning by merohedry (~' = 1, w = 0); twinning 
by pseudomerohedry (S  = 1, w # 0); twinning by 
reticular merohedry (~' > 1, w = 0); and twinning by 
reticular pseudomerohedry (S' > 1, w # 0). 

Donnay & Donnay's (1974) classification scheme lays 
emphasis on the characteristics of the diffraction pattern 

of the twin. The most obvious feature to look for in the 
diffraction pattern is whether or not there is a 'splitting' 
of diffraction spots. If w # 0, such a splitting would be 
present, and one then speaks of twinning by twin-lattice 
quasi-symmetry (TLQS). If w -- 0, the twinning is by 
twin-lattice symmetry (TLS). For each of these primary 
divisions, further subdivision is made in terms of the 
twin index ~'. Thus, compared to the Friedel scheme, 
the relative importance of F and w is interchanged in 
this scheme. 

These classification schemes, though significant and 
useful, do not pack a large amount of crystallophysical 
information, and are therefore not very discriminative. 
For example, both Dauphin6 and Brazil twins of quartz 
come under the TLS category of Donnay & Donnay 
(1974), in spite of the fact that the response of these 
two types of twins to mechanical stress is very different. 
Dauphin6 twins are transformation twins and they can be 
readily detwinned (see, for example, Wadhawan, 1982). 
Brazil twins, on the other hand, are growth twins and it 
is practically impossible to detwin a Brazil twin because 
of the nature of bonding frozen into the structure at the 
nucleation and/or growth stage. It would be desirable 
to place the Dauphin6 and Brazil twins of quartz into 
separate categories. 

Twinning in NHaC1 is another example of the fact that 
the existing classification schemes are not sufficiently 
discriminative. The twin individuals of this crystal dif- 
fer in the sign of the piezoelectric coefficient dl23 
(Newnham & Cross 1974). However, this information 
is ignored in the descriptions 'twinning by merohedry' 
(Friedel) and 'twinning by TLS' (Donnay & Donnay) 
for this case. 

To absorb such additional information, one must 
invoke the space-group symmetry of the crystal. The 
details of twinning are determined by the crystal struc- 
ture and the crystal structure is properly described by the 
space group to which a crystal belongs. A classification 
scheme for twinning based on space-group consider- 
ations was formulated earlier by the present author 
(Wadhawan, 1987) [referred to hereafter as VKW1]. 
The primary subdivision of twinning in this scheme was 
done in terms of Aizu's (1970) concept of prototype 
symmetry (see §2 for some definitions). All twins were 
first divided into two categories, namely Aizu twins and 
Bollmann twins, depending on whether or not the twin 
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mapping operator is an operator of the prototype space 
group. Further subcategories of Aizu twins were defined 
in terms of the nature of the reduction of the symmetry 
of the prototype space group. Similarly, Bollmann twins 
were further categorized in terms of the coincidence 
sublattice. This classification scheme, being based on 
space-group considerations, is adequately informative 
and discriminative. However, it is still not a perfect 
scheme because it does not always ensure uniqueness 
of categorization: it is sometimes possible to assign the 
same twin to two different categories in this scheme. 
VKW 1 tried to overcome this problem by stipulating that 
the Aizu category be assigned a higher priority over the 
Bollmann category. This is not an entirely satisfactory 
arrangement. To overcome this deficiency, we formulate 
a different classification scheme in this paper, using a 
different primary-subdivision criterion. 

The tensor-classification scheme, as the new scheme 
formulated here is called, draws on a number of con- 
cepts from the theory of ferroic and nonferroic phase 
transformations in crystals. Therefore, we first introduce 
some definitions in §2 before describing the modified 
classification in §3. In §4, an informative and compact 
twin symbol is introduced, which is similar in concept 
to the symbol defined in VKW1. Finally, in §5, we 
discuss additional details of the present formalism and 
advance further arguments in support of its generality 
and completeness. 

2. Some relevant concepts and definitions 

Description of transformation twinning involves a com- 
parison of a 'new' crystal structure and an 'old' crystal 
structure. The two crystal structures have different space- 
group symmetries and there is necessarily a loss or gain 
of symmetry operators in going from one structure to the 
other. In this context, statements regarding lost or gained 
symmetry operators have meaning only if the so-called 
nondisruption condition is satisfied (Guymont, 1981; 
Hahn & Wondratschek, 1994). Satisfaction of this con- 
dition means that the new structure arising from a phase 
transition can be described (i.e. its symmetry elements, 
Wyckoff positions of atoms, atomic parameters etc. can 
be located) in the frame of reference of the old struc- 
ture after making (if necessary) continuous distortions 
(affine transformations) that do not themselves entail 
any additional changes of symmetry. Correlation of the 
symmetries of the two structures is a necessary, but not 
always a sufficient, condition for deriving one crystal 
structure from the other. The nondisruption condition 
provides a sufficiency criterion. 

The notion of prototype symmetry was introduced 
by Aizu (1970, 1978). He defined the possible ferroic 
phases of a crystal as 'slight distortions' of one another 
and the prototype as the highest-symmetry structure from 
which the concerned ferroic phases can be derived by a 
slight distortion. The phrase 'slight distortion' was not 

quantified or defined rigorously. We introduce here a 
new definition of prototype symmetry that is intended to 
be more rigorous and precise: 

The prototype symmetry for one or more phase tran- 
sitions in a crystal is the highest space-group symmetry 
attainable by, or conceivable for, that crystal by a 
distortion (affine mapping) of the crystal structure that 
does not violate the nondisruption condition. 

Full justification and implications of such a definition 
will be discussed in a parallel publication. 

Let G and H denote the space-group symmetries of 
the old and the new phases involved in a nonisomorphic 
phase transition. For determining the domain structure of 
the new phase, it is not necessary that H be a subgroup 
of G. It is sufficient that the nondisruption condition is 
satisfied (Guymont, 1981). However, for carrying out a 
group-theoretical analysis of the phase transition G ---* H, 
it is necessary that either G corresponds to the prototype 
symmetry or we replace G by a suitably chosen proto- 
type symmetry group. [Alternative approaches involve 
working with a group, I, which is the intersection group 
of G and H.] 

Assuming that G denotes prototype symmetry, the 
possible number n of the types of single-domain states 
is given by (Aizu, 1970; Janovec, 1972): 

n = ( I G p I ' I H p l ) ( Z H ' Z G ) .  (1) 
Here IGp[ and IHpl are orders of the point groups Gp 
and lip underlying the space groups G and H. The ratio 
Z H : Z 6 is the number of times the primitive unit cell of 
the distorted phase is larger than that of the prototype. 

The single-domain states can thus be numbered as 
D l, D 2, . . . ,  D ,  with n given by (1). If any pair in this 
set is a ferroelastic domain pair, (1) is valid only un- 
der the so-called parent-clamping approximation (PCA) 
(Zikmund, 1984; Janovec, Schranz, Warhanec & Zik- 
mund, 1989). 

All the domains have the same symmetry, described 
by the space group H. However, since they can differ in 
orientation, chirality and/or relative location, the posi- 
tions and orientations of the crystallographic symmetry 
elements in each domain can be different. Let us choose 
a common origin (fixed in the prototype) and denote the 
symmetry groups of D I , D 2 . . . . .  D n by H l , H 2 . . . . .  H,,. 

Symmetry operators of H~ transform domain D~ back 
onto itself. Operators g/ belonging to G, but not to H~, 
will transform D 1 to other domain states (under the PCA, 
if needed). It is readily verified that all operators of G 
that transform D~ to a particular domain state D. are 
given by the left coset gjH 1 (Aizu, 1970; Janovec, 1072): 

Dj-- (gjH~)O,, j -  1,2 . . . . .  n. (2) 

The choice of the domain-mapping operators g is not 
• J 

unique; however, there are exactly n such distinct (or 
representative) operators. 
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Since H l is a proper subgroup of G, the following 
coset decomposition can be written: 

G = Hj + g2Hi + . . .  + g j H  1 + . . .  + g n H i .  (3) 

There is a one-to-one correspondence between the 
domain states D ~ , D  2 . . . . .  D,, and the n left cosets in 
(3). 

3. T e n s o r  c l a s s i f i c a t i o n  o f  t w i n n i n g  

Since we want to make a tensor distinction of properties 
across the twin boundary, we begin by dividing all twins 
into two main categories: those for which at least one 
tensor coefficient is different and those for which all 
macroscopic tensor coefficients are the same (Fig. 1). 
We call the latter category of twins translation twins or 
T-twins. 

Next we note that twins that differ in at least one 
macroscopic tensor property can be of two types: those 
for which a prototype symmetry is definable (we call 
them Aizu twins) and those for which the prototype is 
not definable (we call them Bollmann twins, or B-twins) 
(Bollmann, 1970). 

For Aizu twins, within the PCA, all the twin map- 
ping operators are from among the n domain mapping 
operators gi defined by (3). Since we have already recog- 
nized T-twins as a separate category, all Aizu twins are 
necessarily ferroic twins, i.e. for them the mapping 
operator necessarily has a rotational component; it may 
also sometimes have a fractional translation component 
arising out of a screw-axis or glide-plane operation 
(Guymont, Gratias, Portier & Fayard, 1976). 

Aizu twins neatly divide themselves into two in- 
herently distinct subclasses: ferroelastic or Seignette- 
elastic twins (or S-twins), and nonferroelastic-ferroic 
twins (or N-twins). An S-twin can be considered as 
arising from a ferroelastic phase transition, i.e. a real 
or hypothetical phase transition involving a spontaneous 
distortion of the prototype lattice. [In S-twins, S stands 
for 'Seignette-elastic' or for 'spontaneous distortion'. 
The words 'ferroic' and 'ferroelastic' both begin with 
the letter F, so we use the letter S for ferroelastic twins 
to avoid confusion with the letter F used for 'ferroic' by 
Aizu (1970) for defining his symbol for ferroic species]. 

Proper ferroelastic transitions are well described by 
mean-field theories like the Landau theory (Salje, 1990). 
The same cannot be said of nonferroelastic-ferroic tran- 

No di~n'ence 
in tmsor 
properties. 

T-t'oCms 

Twins 

Twins differ 
in at least 
one tensor 
property 

Fig. 1. The proposed tensor classification of twinning in crystals. 
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Attribute 

Twin type 

S 

Table 1. Comparison of attributes of the four types of twinning in crystals 

Is a prototype 
structure 
conceivable'? 

Yes 

Yes 

B No 

Twins differ in 
which macroscopic Generalized susceptibilities Is detwinning 
tensor property ? near the Curie temperature possible ? Origin of the twin 

Second-rank polar. May At least one of them 
differ in other properties becomes arbitrarily 
also large 

Other than second- At least one of them 
rank polar becomes arbitrarily 

large 

No restriction on ? 
tensor rank, but such 
twins are not derivative 
structures 

T 'Yes' in some None 
cases, 'no' in 
others 

There is no relevant 
generalized susceptibility 

Yes. Theory of ferroic 
transitions provides a 
systematic approach 

Yes. Theory of ferroic 
transitions provides a 
systematic approach 

Very difficult. No 
general theoretical 
approach exists 

No 

Phase transition from 
the prototypic phase 

Phase transition from 
the prototypic phase 

Growth twin; non-ferro- 
elastic mechanical twin; 
disruptive phase transition 

(a) Transformation twin 
(b) Some types of 
stacking fault 

sitions, from which N-twins arise. N-twinning occurs 
when there is a ferroic transition that does not involve a 
distortion of the lattice of the prototype, with N standing 
for 'no distortion' or for 'nonferroelastic-ferroic'.  

Our approach to twinning thus leads to the result that 
all twins can be divided into four fundamentally different 
categories: S-twins, N-twins, B-twins and T-twins (Fig. 
1). Since we have arrived at this conclusion through 
the transformation-twinning route, it remains to be seen 
whether this classification scheme is also adequate for 
growth twins and nonferroelastic mechanical twins. We 
examine this question in {}5. 

3.1. S-twins 
The distinguishing feature of S-twins is a change 

of orientation of the optical indicatrix across the twin 
wall. In fact, they differ in at least one component of 
all second-rank polar tensor properties (the spontaneous 
strain tensor, the dielectric tensor, the magnetic perme- 
ability tensor etc.); see Table 1. Their presence is readily 
revealed under the polarizing microscope (because of 
the relative disorientation of the optical indicatrices) or 
in a diffraction experiment (because of a difference in 
the orientations of the respective crystallographic axes). 
Examples of purely ferroelastic S-twins are: BiVO4, 
BaC12 • 2H20 and Pb3(PO4) 2 (see Wadhawan, 1982). 

S-twins may differ not only in second-rank polar 
tensor properties but also in other macroscopic properties 
like spontaneous polarization, spontaneous magnetiza- 
tion, spontaneous optical activity, compliance coeffi- 
cients etc. Several examples are mentioned in V K W l ,  
where the name F-twins is used for them. 

For a contiguous ferroelastic domain pair, the domains 
on the two sides of the domain wall have different 
values of coefficients of the spontaneous-strain tensor. 
Such domains must therefore undergo small rotations 
(disorientations) for making contact at the domain wall; 

otherwise cracks can appear [see e.g. Wadhawan (1988) 
for a detailed analysis of this problem for the specific 
case of the ferroelastic superconductor Y-Ba-Cu-O] .  
Because of this, the operators that map one such domain 
to another (the twin operators) are not exactly equal to 
the gj in (3). Since the disorientations involved do not 
generally entail additional changes of symmetry, one can 
usually work under the PCA, if needed. 

Since the disorientations can occur in two or more 
equivalent ways, the actual possible number of disorien- 
tation states is more (often much more) than the number 
expected under the PCA (Boulesteix, 1984; Shuvalov, 
Dudnik & Wagin, 1985; Wadhawan, 1988). 

The distinction between S-twins and N-twins is of 
a very basic nature. The spontaneous distortion of the 
prototype lattice, leading to the formation of S-twins, 
has several important consequences (Salje, 1990). One 
is the occurrence of disorientations and a variety of 
'tweed structures' (Salje, 1994). Another is the effect 
of the spontaneous distortion on the kinetics of the 
ferroic phase transition (Salje, 1995) and on the critical 
fluctuations near the Curie temperature; the emerging 
phase tends to suppress the critical fluctuations because 
of the mismatch between the lattices of the old phase 
and the new phase (Friedel, 1981; Wadhawan, 1985). 
The nature of the critical fluctuations has a serious 
influence on response functions in the vicinity of the 
Curie temperature. 

3.2. N-twins 
The distinctive feature of N-twins is that they differ 

with respect to at least one macroscopic tensor property 
other than a second-rank polar tensor property and, in 
addition, their twinning pattern is describable in terms 
of a prototype space group (Table 1). Several examples 
of nonferroelastic ferroic properties, or combinations of 
such properties, are described in VKW1. 
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It is pertinent to point out here that polar second- 
rank tensors are invariant under an inversion operation. 
Therefore, if a contiguous domain pair is related only by 
an inversion operation, it cannot be a ferroelastic domain 
pair and is thus a (ferrogyrotropic) N-twin (see VKWl).  
It may alternatively be just a B-twin. 

Apart from inversion, a mirror operation can also 
change the optical gyration tensor. A second-rank polar 
tensor is not necessarily invariant under a mirror opera- 
tion. Thus it is possible to have ferrogyrotropic S-twins. 
Dicalcium strontium propionate (DSP) is an example 
of this (Wadhawan, 1979; Glazer, Stadnicka & Singh, 
1981). 

Let I denote the group (the intersection group) com- 
prising elements common to H and//2:  

I - - H n H z - - H n [ { R I T - } H { R I ' r } - '  ]. (5) 

Operators of I map component 1 back onto itself 
and, simultaneously, component 2 back onto itself. This 
group is a subgroup of H: I C H. Seitz operators hj 
present in H but not present in I define the possible 
variants of the B-twin and can be identified with the 
cosets in the following coset decomposition: 

H = I +  h 2 1 + . . .  + h j I + . . .  + 14,,1. (6) 

3.3. B-twins  

Bollmann twins or B-twins differ from S-twins and 
N-twins in that a physically meaningful prototype struc- 
ture is not conceivable for them. The following are their 
important subclasses: 

(i) Twins resulting from phase transitions for which 
the nondisruption condition is violated. This includes 
reconstructive phase transitions. 

(ii) All twinned crystals in their prototypic phase, 
rather than in a ferroic phase. This includes all me- 
chanical twinning in crystals with a cubic or hexagonal 
point-group symmetry. An example is that of twinning 
induced in Mg c_r),_ stals across (10i2) planes by a shear 
force along [ 1011 ]. 

(iii) Growth twins like the Brazil twins of a-quartz 
and/'J-quartz. Similarly, the 60°-rotation growth twins in 
crystals of GaAs, GaP and InAs are examples of B-twins 
(Chen et al., 1992). 

(iv) Twins resulting from special coincidence-lattice 
configurations (see §5.3). 

Although a group-theoretical analysis of a B-twin 
configuration cannot make use of the powerful and 
highly successful concept of prototype symmetry, an 
alternative approach making use of the notion of the 
intersection group (Guymont, 1981; Toledano & Pascoli, 
1981; Gratias & Portier, 1982; Kalonji, 1985) is still 
possible, which can even help in understanding the 
mechanism of formation of such twins. The basic idea 
of this approach rests on the often observed fact that, 
for such twins, a fraction of the structural edifice is 
common for the two components of the twin and remains 
undisrupted fight across the twin boundary. Let H and 
H 2 denote the space-group symmetries of component 1 
and component 2 of the B-twin. The two components 
have the same crystal structure but H and H 2 are distinct 
(with reference to a common system of coordinates) 
because the Seitz operator {Rl'r } that maps component 
1 to component 2 is not an identity operator; in fact, 
it necessarily has a rotational part. The two groups are 
related as follows: 

H 2 = {g f~-}H{g lT-} - '  (4) 

Here m is the ratio of the orders of the groups H and 
I, in the spirit of (1). 

This description applies when B-twins are produced 
by mechanical twinning or during crystal growth. We 
discuss next another aspect of B-twins. 

• Our definition of prototype symmetry is so strict that 
a substantial fraction of transformation twins result- 
ing from structural phase transitions will qualify only 
as Bollmann twins, rather than Aizu twins. The most 
obvious examples of such transitions are, of course, 
the reconstructive transitions (e.g. graphite-diamond and 
calcite-aragonite). A symmetry analysis of B-twins can 
be carried out even in such cases by employing the 
notion of intersection symmetry. Let G~ and G 2 denote 
the space groups of the two phases in any such case and 
let I be their intersection group: 

I = G 1 fq G 2. (7) 

G 1 is not a subgroup of G 2 and G 2 is not a subgroup 
of G I but I is a subgroup of both G I and G 2. When 
we consider the phase transition G I ~ G 2, the variants 
(B-twins) of the phase with symmetry G 2 can be listed 
by writing a coset decomposition of G~ with respect to I: 

G1 : l + g l l l  + g l21+  ' ' '  + g J  + ' ' '  + glkl" (8) 

Similarly, when we consider the reverse phase tran- 
sition G 2 ~ G~, the possible B-twin configurations 
in phase G~ can be understood in terms of the coset 
decomposition of G 2 with respect to I: 

G~ = l + g211+ g221+ .. . + g2jl + .. . + g2tl. (9) 

Physically what happens in such situations is that, 
although there is a change in the coordination numbers 
of a certain fraction of the atoms, some of the Wyckoff 
positions remain unchanged and define the group I. The 
phase transition in ZnS and CdS is an example of this 
type (Bol'shakov, Dmitrenko & Abalduev, 1979). For it, 
G j = ojS,, G~ - -  D 4 and I -- C 5 One can not only carry 

. 6 h  3 v" 

out an enumeration of the possible B-twins, but can even 
define a 'composite order parameter' in the spirit of the 
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Landau theory by regarding the phase transition as a 
combination of (at least) two transitions: G I ~ I and 
G2 ---~ I. 

The above analysis suggests a method for a further 
subclassification of B-twins. Let us consider (6). I is 
a subgroup of H and m is the index of I in H (m >_ 
2). A high value of m indicates, in general, a low com- 
monality of Wyckoff positions across the twin boundary. 
Similarly, with reference to (8) and (9), high values of k 
and l are likely to point towards a strong violation of the 
nondisruption condition. We can very conveniently use 
m, k, l (as the case may be) as a subscript for the symbol 
B and describe the twin as a Bin-twin or a Bk-twin. 
Details of such an analysis, with illustrations, will be 
described elsewhere. 

of/~-quartz, and cannot be a ferroic mapping operation 
g, of (3). Brazil twins of quartz (both c~ and /3) are 
titus B-twins (and not N-twins). The twin symbol for 
them is B(g), where g represents the fact that the twin 
components have different optical gyration tensors (or 
opposite chiralities). 

Table 2 gives several examples of the twin symbol. 
This table also serves to highlight the higher information 
content of the present tensor-classification scheme for 
twinning. 

Information about the 'total' or 'partial' nature of a 
coincidence lattice (if any) underlying a twin can be 
included in our twin symbol by attaching a subscript t 
or p, as explained below in §5.3. 

3.4. T-twins 

Translation twins or T-twins do not differ in any 
macroscopic tensor property at all. Their presence can 
be detected with techniques such as HRTEM, etching 
and X-ray diffraction topography with a superlattice 
reflection. Twins across antiphase boundaries in the alloy 
Cu3Au below 667 K are a familiar example of T-twins. 

4. A symbol for twinning 

Since our tensor classification of twinning is based 
primarily on notions drawn from the theory of trans- 
formation twinning, a compact symbol, which conveys 
a large amount of information about the physical na- 
ture of the twin, can be readily introduced, or rather 
reintroduced in the changed framework (see VKW1). 
The symbol consists of one of the letters S, N, B or 
T corresponding to the four basic types of twinning, 
followed by one or more lower-case letters in brackets, 
which denote the tensor properties of interest in which 
the twins differ. For T-twins, the second part of the 
symbol does not exist because such twins do not differ 
in any macroscopic tensor property. 

We consider the case of twinning in quartz as an" 
illustration of how the symbol is assigned, a-Quartz 
is ferrobielastic as well as ferroelastoelectric (see e.g. 
Wadhawan, 1982). The twin symbol for its Dauphin6 
twins is therefore N(d, s), where d denotes the fact that 
the two components of the twin differ in at least one 
piezoelectric coefficient and s represents their difference 
with respect to the compliance tensor. On heating, when 
such a specimen makes a transition to the fl phase, 
Dauphin6 twinning disappears. 

We consider next the Brazil twins of quartz. These 
are growth twins, with a mirror operation parallel to 
the optic axis as the twinning operation. This type 
of twinning does not disappear when a-quartz makes 
a phase transition to the higher-symmetry r-quartz. 
In any case, mirror symmetry is not present in the 
(prototypic) space-group symmetry P6222 (or P6422) 

5. Discussion 

A good classification scheme for twinning should have 
two important features: completeness and uniqueness. 
Completeness means that it should be possible to assign 
all observed types of twinning to one or other of the 
various categories defined by the classification. Unique- 
ness means that each observed example of twinning 
should be assignable to only one category. The earlier 
scheme (VKW1) did not meet the uniqueness criterion 
in a satisfactory manner, as exemplified by the case of 
Dauphin6 twins of quartz. We have had to employ a 
different primary-classification criterion in the present 
paper to overcome this problem. 

We have used concepts from the theory of phase 
transformations for formulating the present classifica- 
tion. Therefore, it is particularly suitable for classifying 
transformation twins. To satisfy the completeness re- 
quirement, it is necessary that the same scheme be 
applicable to nonferroelastic mechanical twins and to 
growth twins. We examine this question now. We also 
discuss here briefly the question of coincidence lattices 
in the context of twinning. 

5.1. Mechanical twins 

Two types of mechanical twins can be distinguished: 
those corresponding to ferroelastic domain pairs and the 
rest. The former are just S-twins and require no further 
discussion here. It should be possible to classify the rest 
of them as B-twins. 

Type 1 mechanical twins (also called mirror twins) are 
defined as those for which the habit plane KI, the second 
invariant direction ~/2 and the shear plane have rational 
indices. The twinning operator for such twins can be 
written as follows in the Seitz notation (Stark, 1988): 

o~, = {inK, It, }. (10) 

Here mr, denotes the mirror operation across the habit 
plane and t~ is an appropriate fractional translation, if 
any. 
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Table 2. Comparison o f  the present classification scheme for  twinning with two other schemes 

The application of the twin symbol introduced in this paper is also illustrated. When the twins differ in spontaneous polarization, the letter p 
appears in the twin symbol of the present scheme. Similarly, e denotes that the twins differ in spontaneous strain, m stands for spontaneous 
magnetization, g for a coefficient of the gyration tensor, d for a piezoelectric coefficient, s for compliance, q for magnetoelastic and o for 
magnetoelectric coefficients. The subscripts t and p denote the existence of total and partial coincidence sublattices, respectively, across the 
twin interface. Many of the entries are discussed at appropriate places in the text. 

Present scheme Friedel's scheme Donnay & Donnay's 
Twin (twin type )  (twinning by) scheme (twinning by) References 

c~-Quartz (Dauphinr) N(d, s) Merohedry TLS (I), (2) 
PbsGe301] N(p, s, g) Merohedry TLS (3), (4) 
BaTiO3 (180 ° twin) N(p, g) Merohedry TLS (1), (4) 
NH4CI N ( d )  Merohedry TLS (1), (4) 
CuCsC13 N(d, g) Merohedry TLS (1), (4), (5) 
CoF2, FeCO 3 N ( q )  Merohedry TLS (1), (6) 
Cr203 N(t~)  Merohedry TLS ( 1 ), (6) 
o-Quartz (Brazil) B ( g )  Merohedry TLS (2) 
Pyrite [(I 10) mirror] nt Merohedry TLS (7), (8) 
F.c.c. metals Bp Reticular TLS (7) 

[(111) mirror twin] merohedry 
Mg B '~ TLQS ( 1 ) 
Cu3 Au T '~ TLS (9) 
BaTiO3 (90 ° twin) S(p, e) Pseudomerohedry TLQS (1) 
Fe3 O4 S(m, e) Pseudomerohedry TLQS ( I 0) 
Ni-I boracite S(p, m, e) Pseudomerohedry TLQS ( I 0) 
Aragonite S(e) Reticular TLQS (8) 

pseudomerohedry 

References: (1) Wadhawan (1982); (2) Donnay & Donnay (1974); (3) Toledano & Toledano (1976); (4) Aizu (1972); (5) Wadhawan (1979); 
(6) Newnham & Cross (1974); (7) Gratias et al. (1979); (8) Cahn (1954): (9) Portier & Gratias (1982); (10) Aizu (1970). 

Type 2 mechanical twins (or rotation twins) are char- 
acterized by a rational second-invariant plane K z and a 
rational shear direction r/~. A typical twin operator for 
them has the form 

( ~ 2 -  {2,7,1t2}" (11) 

For a compound twin (Cahn, 1954), K l, K 2, ~71 and 
712 all have rational indices. 

It is clear from the above description that the twinning 
operator in all types of  mechanical  twins (type 1, type 
2, compound) has the form of  a Seitz operator indicated 
by (10) or (11). If this operator can be identified with 
one of the gjs in (3), the mechanical  twin is an S-twin; if 
not, it can be identified with one of  the his in (6) and we 
have a B-twin. But in either case our tensor classification 
of twinning is applicable to all mechanical  twins (both 
ferroelastic and nonferroelastic). 

5.2. Growth twins 

We shall use the term 'growth twins'  for twins formed 
during the nucleation and/or growth stages of crystal 
growth from a fluid phase. Twinning arising from the 
growth of a crystal from another solid phase is normally 
described as transformation twinning. 

Growth of a crystal from a fluid phase is necessarily 
a process of  first-order phase transition. Because of the 
negative and large change of  entropy in going from the 
fluid phase to the crystalline phase, the process occurs 

in two distinct steps, namely nucleation and growth. 
And because of  the competi t ion between the surface 
contribution and the bulk contribution to the free energy, 
nuclei ( ' embryos ' )  of  a size below a certain critical value 
tend to be redissolved and only those above the critical 
size are able to grow into larger crystals. Growth twins 
can be formed at both the nucleation and the growth 
stages. 

5.2.1. Nucleation. At the beginning of  the formation 
of  the nucleus, the surface-energy term is very dominant 
(Mutaftschiev, 1993). The term clusters is used for 
aggregates of atoms that, unlike molecules, are not 
found in appreciable numbers in vapours in equilibrium 
(Martin, 1988). Clusters may consist of  about 100-1000 
growth units or less. Small clusters undergo a process 
of  reconstruction: every time a unit of the crystallizing 
species attaches itself to the cluster, the units rearrange 
themselves completely. This goes on until a large enough 
size is reached, beyond which the addition of  one more 
growth unit does not lead to drastic reconstruction and 
the microcrystal already has the symmetry of  the final 
bulk crystal. This cluster-to-crystal transition necessarily 
involves a change of  symmetry (Multani & Wadhawan, 
1990; Haberland, 1994). For every symmetry operator 
lost at such a transition, equivalent configurations (twins) 
can appear in the microcrystal and the possible twin 
variants would have a one-to-one correspondence with 
the cosets in (8). 

The symmetry of  the clusters need not always be from 
among the 32 crystallographic point groups. Icosahedral 
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symmetry is favoured quite frequently. Gold clusters, 
for example, have icosahedral symmetry in the 4-15 nm 
regime. Since icosahedral symmetry is not compatible 
with translational periodicity of a bulk single crystal in 
three-dimensional space, the cluster-to-crystal transition 
in such a case is not a nondisruptive transition, so that 
Aizu twins can be ruled out in such a case. It may also 
involve multiple twinning as an adjustment mechanism 
(Ajayan & Marks, 1990; Riley, 1990). Gold clusters 
change from icosahedral symmetry to face-centred cubic 
symmetry on reaching a size of 15 nm (Renou & Gillet, 
1981). 

In the ultimate analysis, peculiarities of the atomic 
structure determine the laws of twinning at the nu- 
cleation or growth stages. For example, the energy of 
formation of a faulted two-dimensional embryo having 
the configuration of a rotation twin is very low for Si 
or Ge crystals (Tiller, 1991a). Twinning at even the 
nucleation stage is therefore quite likely to occur in 
them. The space-group symmetries involved are either 
noncrystallographic or prototypic (cubic for the case of 
Si) with B-twins as the only possibility. 

5.2.2. Growth. The growth rates of the various 
habit faces are different because of their specific atomic 
structures. Similarly, the likelihood of a particular habit 
face becoming a twin interface increases if it has a high 
reticular density of atoms and if a large fraction of the 
atomic sites is common to the individuals comprising the 
twin. For example, in crystals with f.c.c, symmetry, the 
twin plane is parallel to the octahedral face, which has 
the maximum density of atoms. This is typical of the 
spinel law of twinning. Similarly, in aragonite twins, 
a fraction of the structure of CaCO 3 has a common 
orientation in the two components. 

In growth twins, a twin-operation configuration pro- 
vides additional re-entrant corners or junctions where 
the growth units can bind more strongly, resulting in 
enhanced growth rates compared with surface or terrace 
sites. However, since dislocations are also normally 
present in real specimens, the generation rate of layers 
of the growing crystal is determined by three primary 
competing mechanisms: (i) two-dimensional or 'pill- 
box' nucleation; (ii) screw dislocations; and (iii) twin- 
plane re-entrant corners (Sunagawa, 1987). In both (i) 
and (iii), layers are initiated by nucleation of two- 
dimensional pill boxes but in (iii) only a partial pill box, 
with a lower formation energy, is needed (Tiller, 1991a). 

Mechanical twinning can also occur during the growth 
of a crystal due to internal mechanical and thermal 
stresses (Tiller 1991b). 

In the laboratory, large crystals are often grown by 
starting with a seed crystal, which grows in size on 
being surrounded by the nutrient fluid under appro- 
priate conditions. Kotru & Raina (1982) and Kotru, 
Kachroo & Raina (1985) investigated the occurrence of 
microtwins in hydrothermally grown synthetic quartz. 
They concluded that the microtwins mainly originate at 

the surface of the seed, and usually exist beforehand, 
having been produced by the stress at high temperatures 
generated by the sawing procedures used for obtaining 
the seed from a larger crystal. The mechanical twins 
so produced on the surface of the seed crystal are not 
always dissolved away fully by the etching practices 
adopted. 

5.2.3. Summary. Twinning can occur during both 
the nucleation stage and the growth stage of a crys- 
tal. The formation of variants at the cluster-to-crystal 
transition is not a thoroughly investigated subject yet. 
However, in view of the noncrystallographic symmetry 
often adopted by clusters, and also because of the re- 
constructive nature of this transition, such growth twins 
are not very likely to be S-twins or N-twins. After the 
nucleation has occurred and growth is progressing, twin- 
ning can also arise as a result of 'probability accidents' 
(Tiller 1991 b), especially when such 'accidents' can lead 
to increased growth rates because of the peculiarities of 
the atomic structure at certain habit faces. The re-entrant 
sites appearing as a result of such twinning operations 
can serve as ledges where attachment of growth units 
can occur at a faster rate than on the surface or terrace 
sites of the growing crystal. 

Growth twins are expected to be B-twins, in general. 
The twinning operations involved in them are normally 
not traceable to a prototype symmetry group in the spirit 
of (3). We have already seen the case of Brazil twins in 
quartz. Another example is that of twins in III-V com- 
pound semiconductors, which have been identified by 
Chen et al. (1992) to be 60°-rotation twins, a nonferroic 
operation in the present context. 

5.3. Coincidence sublattices and twinning 

The translational symmetry of a twin is described by 
the translation group underlying the intersection group 
I [cf. (5)1: 

T, - T n  [{RI~-}T{RI~-}-'], (12) 

where T is the translation group of component 1 of the 
twin. 

T 1 can have a dimensionality of 3, 2, 1 or 0 (Pond 
& Bollmann, 1979). A three-dimensional T t implies 
the existence of a coincidence lattice running right 
across the interface of the twin. Although the group T I 
comprises only lattice translations, the presence of Seitz 
operators in (12) makes it possible to identify point- 
group operations that achieve the same invariance of 
the twin as that achieved by pure lattice translations 
of T/. Coincidence lattices can occur in both Aizu and 
Bollmann twins. 

A crystal structure can be considered as consisting of 
a number of sublattices corresponding to the various sets 
of Wyckoff positions. Often, even a subset of one type 
of Wyckoff position can constitute a sublattice (with an 
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underlying translation group) (Gratias, Portier, Fayard & 
Guymont, 1979; Doni, Bleris, Karakostas, Antonopoulos 
& Delavignette, 1985). A sublattice L is called a total 
sublattice by Gratias et al. (1979) if it consists of one 
or more complete sets of Wyckoff positions. If at least 
one set of Wyckoff positions is included only partially 
in the sublattice, it is a partial sublattice. Any number 
of sublattices can be constructed from a total or partial 
sublattice. 

Several important features of total sublattices have 
been discussed by Gratias et al. (1979). The space group 
of a crystal is always a subgroup of the space group of 
any of its total sublattices. Further, if a total sublattice 
consists of only one set of Wyckoff positions, the twin 
mapping operation (if present) is always 'translation 
reducible' (comprises only a point operation). 

Available information about the total or partial nature 
of a sublattice in a given twinned crystal can be readily 
incorporated in our classification scheme by appending 
a subscript t (for total) or p (for partial) to the symbols 
S, N o r B .  

The (110) mirror twins of pyrite (FeS 2) are an exam- 
ple of twins with a total sublattice (Gratias et al., 1979). 
They are also B-twins. Therefore, the twin symbol for 
them is B t (Table 1). 

The (111) mirror twins commonly found in f.c.c. 
metals have a partial underlying coincidence lattice and 
their twin symbol therefore is B r (Table 2). 

6. Conclusions 

The limitations of the classification scheme for twin- 
ning formulated in VKWI are overcome in the present 
scheme, which has been obtained by using an entirely 
different classification criterion. In particular, the present 
classification provides a unique place for every kind of 
twinning. Consequently, there is no need to assign a 
higher priority or seniority to Aizu twins over Bollmann 
twins. Another improvement is the following: In VKW1, 
coincidence lattices are taken note of only for Bollmann 
twins, although their occurrence for N-twins is also men- 
tioned in passing. In the present paper, it is recognized 
explicitly that coincidence lattices can occur for both 
Aizu twins and Bollmann twins. 

The principal result of the present work is that all 
twinning in crystals can be divided into four fundamen- 
tally different types: S, N, B and T. Table 1 provides a 
comparison of their attributes. S-twins (which are called 
F-twins in VKW 1) and N-twins are derivative structures, 
derived from an appropriate prototype symmetry by the 
loss of one or more symmetry operators. They are ferroic 
twins and therefore always differ in at least one macro- 
scopic tensor property. B-twins also differ in at least 
one macroscopic tensor property but are different from 
S-twins and N-twins in that they are not derived from 
a supergroup prototype symmetry in a nondisruptive 
manner. The rigorous definition of prototype symmetry 

introduced in this paper in terms of the nondisruption 
condition makes this distinction very sharp. Several 
types of mechanical twins and practically all growth 
twins fall into the category of B-twins. Reconstructive 
transformations also result in B-twins only. T-twins do 
not differ in any tensor property at all; they may or may 
not be derivative structures the way ferroic twins are. 

The fundamental nature of the distinction between 
S-twins and N-twins on one hand and B-twins on the 
other becomes all the more apparent in situations where 
a phase transition to the prototypic structure can ac- 
tually be realized at a suitable temperature T. and 
pressure P.. In the vicinity of (7"., P.), the response 
function of a ferroic crystal for a macroscopic tensor 
property (corresponding to the order parameter of the 
transition) becomes arbitrarily large, a fact that can 
be exploited, for example, for the detwinning of such 
crystals (Wadhawan, 1982). Generally speaking, no such 
blowing up of the response function may occur for 
B-twins, simply because they do not arise as deriva- 
tive structures from a real or hypothetical prototypic 
phase. However, the question of response functions in 
the vicinity of phase transitions that do not respect 
the nondisruption condition needs to be investigated 
thoroughly. 

A compact and informative twin symbol has been in- 
troduced. The presence of any total or partial coincidence 
sublattice across a twin interface is an additional piece 
of information, which is easily incorporated in the twin 
symbol by the use of a subscript (t or p) with the main 
symbol. 

The present formulation of the classification of twin- 
ning in terms of tensor properties makes it possible to 
make practical use of the results of group-theoretical 
analyses of tensor distinction of domains resulting from 
ferroic phase transitions (Janovec, Richterova & Litvin, 
1992, 1993; Litvin, Litvin & Janovec, 1995; Litvin & 
Janovec, 1996). 
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